Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
BMC Microbiol ; 24(1): 89, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491414

RESUMO

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is a challenging global health threat, resulting in significant morbidity and mortality worldwide. This study aims to determine the molecular characteristics and antimicrobial susceptibility of 263 MRSA isolates in Zhejiang Province, east China. METHODS: From 2014 to 2019, a total of 263 MRSA isolates from bloodstream infections (BSIs) were collected from 6 hospitals in 4 cities in Zhejiang province, east China. Antimicrobial susceptibility tests were conducted according to the guidelines set forth by the Clinical and Laboratory Standards Institute (CLSI). To characterize and analyze these isolates, multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) typing and virulence genes gene profiles were performed. RESULTS: The most predominant clone was ST5-SCCmec II-t311, which accounted for 41.8% (110/263), followed by ST59 (44/263, 16.7%). Compared with non-ST5-II-t311 isolates, ST5-II-t311 isolates were more resistant to erythromycin, tetracycline, levofloxacin, moxifloxacin, and ciprofloxacin, but more susceptible to clindamycin. Moreover, the rates of multidrug resistance were higher in ST5-II-t311 isolates compared to the non-ST5-II-t311 isolates. In comparison to the non-ST5-II-t311 isolates, ST5-II-t311 isolates showed no significant difference in virulence genes detected. CONCLUSIONS: MRSA ST5-II-t311 clone has become the most predominant clone in Zhejiang Province, east China and has higher rates of multidrug resistance than other isolates, that should be kept in mind when treating BSI. Moreover, MRSA ST59 clone shows an upward trend and has begun to spread into hospitals. Our findings highlight the importance of epidemiological studies of S. aureus carriage in the eastern region.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Infecções Estafilocócicas/tratamento farmacológico , Tipagem de Sequências Multilocus/métodos , Prevalência , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cromossomos , China/epidemiologia , Testes de Sensibilidade Microbiana
2.
Arch Microbiol ; 206(3): 121, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400998

RESUMO

Yogurt, a globally consumed fermented dairy product, is recognized for its taste and potential health benefits attributed to probiotic bacteria, particularly Streptococcus thermophilus. In this study, we employed Multilocus Sequence Typing (MLST) to investigate the genetic diversity and phylogenetic relationships of 13 S. thermophilus isolates from traditional Turkish yogurt samples. We also assessed potential correlations between genetic traits and geographic origins. The isolates were identified as S. thermophilus using VITEK® MALDI-TOF MS, ribotyping, and 16S rRNA analysis methods. MLST analysis revealed 13 different sequence types (STs), with seven new STs for Turkey. The most prevalent STs were ST/83 (n = 3), ST/135 (n = 2), and ST/134 (n = 2). eBURST analysis showed that these isolates mainly were singletons (n = 7) defined as sequence types (STs) that cannot be assigned to any group and differ at two or more alleles from every other ST in the sample. This information suggests that the isolates under study were genetically distinct from the other isolates in the dataset, highlighting their unique genetic profiles within the population. Genetic diversity analysis of ten housekeeping genes revealed polymorphism, with some genes showing higher allelic variation than others. Tajima's D values suggested that selection pressures differed among these genes, with some being more conserved, likely due to their vital functions. Phylogenetic analysis revealed distinct genetic diversity between Turkish isolates and European and Asian counterparts. These findings demonstrate the genetic diversity of S. thermophilus isolates in Turkish yogurt and highlight their unique evolutionary patterns. This research contributes to our understanding of local microbial diversity associated with yogurt production in Turkey and holds the potential for identifyic strains with enhanced functional attributes.


Assuntos
Streptococcus thermophilus , Iogurte , Tipagem de Sequências Multilocus/métodos , Streptococcus thermophilus/genética , Filogenia , RNA Ribossômico 16S/genética , Turquia , Polimorfismo Genético , Variação Genética
3.
Appl Environ Microbiol ; 90(3): e0129223, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289130

RESUMO

Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Tipagem de Sequências Multilocus/métodos , Genômica/métodos , Epidemiologia Molecular/métodos , Surtos de Doenças
4.
Vet Microbiol ; 290: 109997, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237446

RESUMO

Mycoplasma (M.) hyosynoviae is a commensal of the upper respiratory tract in swine, which has the potential to spread systemically, usually resulting in arthritis in fattening pigs and gilts. To date, very little is known about the epidemiology of M. hyosynoviae, mainly due to a lack of suitable typing methods. Therefore, this study aimed to develop both a conventional multi locus sequence typing (MLST) and a core genome (cg) MLST scheme. The development of the cgMLST was based on whole genome sequences of 64 strains isolated from pigs and wild boars during routine diagnostics as well as nine publicly available genomes. A cgMLST scheme containing 390 target genes was established using the Ridom© SeqSphere+ software. Using this scheme as a foundation, seven housekeeping genes were selected for conventional MLST based on their capability to reflect genome wide relatedness and subsequently, all 73 strains were typed by applying both methods. Core genome MLST results revealed a high diversity of the studied strain population and less than 100 allele differences between epidemiologically unrelated strains were only detected for four isolates from the US. On the other hand, seven clonal clusters (≤ 12 allele differences) comprising 20 isolates were identified. Comparison of the two typing methods resulted in highly congruent phylogenetic trees and an Adjusted Rand Coefficient of 0.893, while cgMLST showed marginally higher resolution when comparing closely related isolates, indicated by a slightly higher Simpson's ID (0.992) than conventional MLST (Simpson's ID = 0.990). Overall, both methods seem well suited for epidemiological analyses for scientific as well as diagnostic purposes. While MLST is faster and cheaper, cgMLST can be used to further differentiate closely related isolates.


Assuntos
Genoma Bacteriano , Mycoplasma hyosynoviae , Animais , Suínos , Feminino , Tipagem de Sequências Multilocus/métodos , Tipagem de Sequências Multilocus/veterinária , Mycoplasma hyosynoviae/genética , Filogenia , Epidemiologia Molecular/métodos
5.
Eur J Clin Microbiol Infect Dis ; 43(2): 297-304, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041721

RESUMO

PURPOSE: To evaluate the performance of core genome multilocus sequence typing (cgMLST) for genotyping Mycobacterium tuberculosis (M.tuberculosis) Strains in regions where the lineage 2 strains predominate. METHODS: We compared clustering by whole-genome SNP typing with cgMLST clustering in the analysis of WGS data of 6240 strains from five regions of China. Using both the receiver operating characteristic (ROC) curve and epidemiological investigation to determine the optimal threshold for defining genomic clustering by cgMLST. The performance of cgMLST was evaluated by quantifying the sensitivity, specificity and concordance of clustering between two methods. Logistic regression was used to gauge the impact of strain genetic diversity and lineage on cgMLST clustering. RESULTS: The optimal threshold for cgMLST to define genomic clustering was determined to be ≤ 10 allelic differences between strains. The overall sensitivity and specificity of cgMLST averaged 99.6% and 96.3%, respectively; the concordance of clustering between two methods averaged 97.1%. Concordance was significantly correlated with strain genetic diversity and was 3.99 times (95% CI, 2.94-5.42) higher in regions with high genetic diversity (π > 1.55 × 10-4) compared to regions with low genetic diversity. The difference missed statistical significance, while concordance for lineage 2 strains (96.8%) was less than that for lineage 4 strains (98.3%). CONCLUSION : cgMLST showed a discriminatory power comparable to whole-genome SNP typing and could be used to genotype clinical M.tuberculosis strains in different regions of China. The discriminative power of cgMLST was significantly correlated with strain genetic diversity and was slightly lower with strains from regions with low genetic diversity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Genótipo , Genoma Bacteriano , Tipagem de Sequências Multilocus/métodos , China/epidemiologia , Tuberculose/microbiologia
6.
APMIS ; 132(2): 94-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37965984

RESUMO

The aim of this study was to investigate antimicrobial susceptibilities and genomic characteristics of mupirocin-resistant MRSA isolates in Stockholm, Sweden. In total, 44 non-duplicate mupirocin-resistant MRSA isolates detected in Stockholm during 2010-2022 were investigated. Antimicrobial susceptibility testing was performed using broth microdilution method and further tested for high-level mupirocin-resistance (MuH) and rifampicin by Etest®. All isolates were subjected to whole genome sequencing. 41 isolates presented MuH with MICs ≥1024 mg/L whilst three isolates displayed low-level mupirocin resistance (MuL). mupA-gene was detected in all MuH isolates. Point mutations in ileS gene leading to N213D and V588F were identified in the three MuL isolates. Mutation in rpoB (H481N) was detected in a rifampicin-resistant isolate. Among the isolates, 15 multi-locus sequence types (MLST) were identified, with the four most common sequence types (ST22, ST72, ST8, and ST125) accounting for 66% of the isolates. Mupirocin-resistant MRSA in Stockholm was uncommon, with a percentage of <0.5% among MRSA cases during 2010-2022. In the present study, most mupirocin-resistant isolates were MuH and mupA-positive, predominantly linked to ST22 or ST72 isolates. MuL-resistance was associated with a point mutation in the IleS protein. A multidrug-resistant ST1-MRSA-IV strain was resistant to both mupirocin and rifampicin.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Mupirocina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Rifampina/farmacologia , Tipagem de Sequências Multilocus/métodos , Suécia/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Testes de Sensibilidade Microbiana , Genômica
7.
Int J Med Microbiol ; 314: 151595, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159514

RESUMO

The rapid increase of OXA-244-producing Escherichia coli, predominantly driven by genetically clustered isolates of sequence type (ST)38, has been observed in at least nine European countries, including Germany. However, the reasons for the spread of OXA-244-producing E. coli remain unclear. Here, we aim to evaluate the possibility of prolonged carriage. We identified a total of six different patients with repeated detection of OXA-244-producing E. coli isolates, which were subjected to both short and long-read whole-genome sequencing (WGS). Besides allelic differences using core genome multilocus sequence typing (cgMLST) analyses, we obtained numbers of single-nucleotide polymorphisms (SNPs) to calculate individual base-pair substitution (BPS) rates. To assess possible re-exposure and risk factors for prolonged carriage, case interviews were conducted. The time between detections ranged from eleven months to more than three years. Initial isolates originated in three+ out of six cases from clinical samples, whereas remaining samples were from screening, mostly in the inpatient setting. As expected, cgMLST analyses showed low numbers of allelic differences between isolates of each case ranging from 1 to 4, whereas numbers of SNPs were between 2 and 99 (mean = 36), thus clearly highlighting the discrepancy between these different bacterial typing approaches. For five out of six cases, observed BPS rates suggest that patients can be colonized with OXA-244-producing E. coli, including ST38 cluster isolates, for extensively long times. Thus, we may have previously missed the epidemiological link between cases because exposure to OXA-244-producing E. coli could have occurred in a time frame, which has not been evaluated in previous investigations. Our results may help to guide future epidemiological investigations as well as to support the interpretation of genetic diversity of OXA-244-producing E. coli, particularly among ST38 cluster isolates.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Tipagem de Sequências Multilocus/métodos , Antibacterianos , Testes de Sensibilidade Microbiana
8.
PLoS Negl Trop Dis ; 17(12): e0011823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060593

RESUMO

BACKGROUND: Burkholderia pseudomallei possesses a diverse set of genes which encode a vast array of biological functions reflecting its clinical, ecological and phenotypic diversity. Strain variation is linked to geographic location as well as pattern of land uses. This soil-dwelling Gram-negative pathogen causes melioidosis, a tropical disease endemic in northern Australia and Southeast Asian regions including Bangladesh. Phylogeographic analyses of B. pseudomallei isolates by molecular typing techniques could be used to examine the diversity of this organism as well as to track melioidosis epidemics. METHODS: In this study, 22 B. pseudomallei isolates, of which 20 clinical and two soil isolates were analyzed, utilizing Real-time PCR assay and multilocus sequence typing (MLST). The sequences were then submitted to PubMLST database for analysis and construction of phylogenetic tree. FINDINGS: A total of 12 different sequence types (STs) that includes four novel STs were identified for the first time. Strains having STs 1005, 1007 and 56 were the most widespread STs frequently isolated in Bangladesh. ST 1005, ST 56, ST 1007 and ST 211 have been detected not only in Bangladesh but are also present in many Southeast Asian countries. SIGNIFICANCE: ST 1005 was detected in both soil and clinical samples of Gazipur. Most prevalent, ST 56 has been previously reported from Myanmar, Thailand, Cambodia and Vietnam, confirming the persistence of the genotype over the entire continent. Further large-scale study is necessary to find out the magnitude of the infection and its different reservoirs in the environment along with phylogeographic association.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Melioidose/epidemiologia , Tipagem de Sequências Multilocus/métodos , Filogenia , Bangladesh/epidemiologia , Tailândia , Solo
9.
Front Cell Infect Microbiol ; 13: 1280372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106474

RESUMO

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a predominant strain of healthcare-associated infections worldwide, particularly in intensive care units (ICUs). Therefore, it is imperative to study the molecular epidemiology of CRAB in the ICUs using multiple molecular typing methods to lay the foundation for the development of infection prevention and control strategies. This study aimed to determine the antimicrobial susceptibility profile, the molecular epidemiology and conduct homology analysis on CRAB strains isolated from ICUs. Methods: The sensitivity to various antimicrobials was determined using the minimum inhibitory concentration (MIC) method, Kirby-Bauer disk diffusion (KBDD), and E-test assays. Resistance genes were identified by polymerase chain reaction (PCR). Molecular typing was performed using multilocus sequence typing (MLST) and multiple-locus variable-number tandem repeat analysis (MLVA). Results: Among the 79 isolates collected, they exhibited high resistance to various antimicrobials but showed low resistance to levofloxacin, trimethoprim-sulfamethoxazole, and tetracyclines. Notably, all isolates of A. baumannii were identified as multidrug-resistant A. baumannii (MDR-AB). The bla OXA-51-like, adeJ, and adeG genes were all detected, while the detection rates of bla OXA-23-like (97.5%), adeB (93.67%), bla ADC (93.67%), qacEΔ1-sul1 (84.81%) were higher; most of the Ambler class A and class B genes were not detected. MLST analysis on the 79 isolates identified five sequence types (STs), which belonged to group 3 clonal complexes 369. ST1145Ox was the most frequently observed ST with a count of 56 out of 79 isolates (70.89%). MLST analysis for non-sensitive tigecycline isolates, which were revealed ST1145Ox and ST1417Ox as well. By using the MLVA assay, the 79 isolates could be grouped into a total of 64 distinct MTs with eleven clusters identified in them. Minimum spanning tree analysis defined seven different MLVA complexes (MCs) labeled MC1 to MC6 along with twenty singletons. The locus MLVA-AB_2396 demonstrated the highest Simpson's diversity index value at 0.829 among all loci tested in this study while also having one of the highest variety of tandem repeat species. Conclusion: The molecular diversity and clonal affinities within the genomes of the CRAB strains were clearly evident, with the identification of ST1144Ox, ST1658Ox, and ST1646Oxqaq representing novel findings.


Assuntos
Acinetobacter baumannii , Antibacterianos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acinetobacter baumannii/genética , beta-Lactamases/genética , Tipagem de Sequências Multilocus/métodos , Epidemiologia Molecular , Farmacorresistência Bacteriana/genética , Hospitais de Ensino , Testes de Sensibilidade Microbiana , China/epidemiologia , Carbapenêmicos/farmacologia , Unidades de Terapia Intensiva
10.
Microbiol Spectr ; 11(6): e0276623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909758

RESUMO

IMPORTANCE: Clostridium neonatale has been isolated from the fecal samples of asymptomatic neonates and cases of necrotizing enterocolitis (NEC). Taking advantage of a large collection of independent strains isolated from different spatio-temporal settings, we developed and established a cgMLST scheme for the molecular typing of C. neonatale. Both the cgMLST and cgSNP methods demonstrate comparable discrimination power. Results indicate geographic- and temporal- independent clustering of C. neonatale NEC-associated strains. No specific cgMLST clade of C. neonatale was genetically associated with NEC.


Assuntos
Clostridium , Enterocolite Necrosante , Recém-Nascido , Humanos , Tipagem de Sequências Multilocus/métodos , Enterocolite Necrosante/genética , Genoma Bacteriano
11.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966168

RESUMO

Core genome multilocus sequence typing (cgMLST) has gained in popularity for bacterial typing since whole-genome sequencing (WGS) has become affordable. We introduce here pyMLST, a new complete, stand-alone, free and open source pipeline for cgMLST analysis. pyMLST can create or import a core genome database. For each gene, the first allele is aligned against the bacterial genome of interest using BLAT. Incomplete genes are aligned using MAFT. All data are stored in a SQLite database. pyMLST accepts assembly genomes or raw data (with the option pyMLST-KMA) as input. To evaluate our new tool, we selected three genome collections of major bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and compared them with pyMLST, pyMLST-KMA, ChewBBACA, SeqSphere and the variant calling approach. We compared the sensitivity, precision and false-positive rate for each method with those of the variant calling approach. Minimal spanning trees were generated with each type of software to evaluate their interest in the context of a bacterial outbreak. We found that pyMLST-KMA is a convenient screening method to avoid assembling large bacterial collections. Our data showed that pyMLST (free, open source, available in Galaxy and pipeline ready) performed similarly to the commercial SeqSphere and performed better than ChewBBACA and pyMLST-KMA.


Assuntos
Benchmarking , Genoma Bacteriano , Tipagem de Sequências Multilocus/métodos , Epidemiologia Molecular/métodos , Software
12.
Ann Clin Microbiol Antimicrob ; 22(1): 104, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993871

RESUMO

OBJECTIVE: To investigate the characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) in bone and joint infection (BJI) among children. METHODS: A total of 338 patients diagnosed with BJI from 2013 to 2022 in Children's Hospital of Fudan University were enrolled. Demographic information, microbiology culture results and laboratory findings, including white blood counts (WBC), C-reactive protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), and erythrocyte sedimentation rate (ESR) were collected and analyzed. MRSA was confirmed by antimicrobial susceptibility testing. Other MRSA-caused infections were randomly selected for comparison. Twenty-three virulence and antimicrobial resistance (AMR) genes were screened for MRSA strains. Multilocus sequence typing (MLST) and Staphylococcal protein A (spa) typing were performed using PCR amplification and sequencing. RESULTS: Of the identified pathogens in BJI, MRSA accounted for 21.0% (47/224). Patients with BJI had high levels of initial CRP, white blood cell count (WBC) and IL-6. ST59 (43.9%) and t437 (37.6%) were the main MRSA subtypes isolated from the children. The major genotypes in BJI were ST59-t437 (29.8%) and ST22-t309 (14.9%), with high carriage of hemolysins including hla (94.4-100%), hlb (66.2-93.3%), and hld (100%). Notably, Panton-Valentine leukocidin (pvl) had a high prevalence (53.3%) in ST22-t309-MRSA. Other virulence genes including tst, seg and sei were more commonly detected in ST22-t309-MRSA (40.0-46.7%) than in ST59-t437-MRSA (4.2-9.9%). High-carriage AMR genes in MRSA included aph(3')/III (66.7-80%), ermB (57.5-73.3%) and ermC (66.7-78.9%). MRSA presented high-resistance to erythromycin (52.0-100%) and clindamycin (48.0-92.5%), different genotypes displayed variation in their susceptibilities to antibiotics. CONCLUSIONS: The major MRSA genotype in BJI was ST59-t437, followed by ST22-t309, with a higher prevalence of the pvl gene. Continuous surveillance of pvl-positive ST22-t309-MRSA in pediatric BJI infections is thus required.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Criança , Humanos , Tipagem de Sequências Multilocus/métodos , Interleucina-6/genética , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
13.
Indian J Med Microbiol ; 46: 100419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37945113

RESUMO

PURPOSE: OXA-48 producing Klebsiella pneumoniae is an emerging threat and outbreaks due to specific sequence types have been commonly reported. Here, we report an outbreak due to multidrug-resistant ST395 K. pneumoniae ST395. To the best of our knowledge, this is the first outbreak of K. pneumoniae ST395 harbouring blaOXA-48 genes in our country. METHODS: The strains were characterized by antimicrobial susceptibility, extended-spectrum ß-lactamase (ESBL) and carbapenemase production, plasmid-mediated colistin, high-level aminoglycoside, and quinolone resistance. Also multidrug efflux pumps and porin coding genes were investigated. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), wzi typing and plasmid analysis were used for the epidemiological relationships. RESULTS: All strains were positive for blaOXA-48 with at least one of the ß-lactamase genes (blaCTX-M, blaTEM, blaSHV) and harboured IncL plasmids. 16 of 20 (80%) isolates carried qnrA. All isolates were positive for aac(6')-1b, acrAB-tolC, ompK35, and ompK36 genes but none of them harboured 16s rRNA methyltransferase, mcr-1-5, qepA, oqxAB, and mdtK genes. All strains had the same PFGE pattern, that is, wzi type K2 and found to be ST395 with MLST. CONCLUSION: The association of ST395 with OXA-48-producers could be an emerging threat for Turkey and continuous monitoring is crucial to prevent the spread of these powerful strains.


Assuntos
Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos/farmacologia , Colistina/farmacologia , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus/métodos , Turquia/epidemiologia , RNA Ribossômico 16S , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
14.
Vet Microbiol ; 287: 109909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925876

RESUMO

Mycoplasma iowae is a worldwide spread and economically important avian pathogen that mostly infects turkeys. Currently, multi-locus sequence typing (MLST) serves as the gold standard method for strain identification in M. iowae. However, additional robust genotyping methods are required to effectively monitor M. iowae infections and conduct epidemiological investigations. The first aim of this study was to develop genotyping assays with high resolution, that specifically target M. iowae, namely a multiple-locus variable number of tandem-repeats analysis (MLVA) and a core genome multi-locus sequence typing (cgMLST) schema. The second aim was the determination of relationships among a diverse selection of M. iowae strains and clinical isolates with a previous and the newly developed assays. The MLVA was designed based on the analyses of tandem-repeat (TR) regions in the six serotype reference strains (I, J, K, N, Q and R). The cgMLST schema was developed based on the coding sequences (CDSs) common in 95% of the examined 99 isolates. The samples were submitted for a previously published MLST assay for comparison with the developed methods. Out of 94 TR regions identified, 17 alleles were selected for further evaluation by PCR. Finally, seven alleles were chosen to establish the MLVA assay. Additionally, whole genome sequence analyses identified a total of 676 CDSs shared by 95% of the isolates, all of which were included into the developed cgMLST schema. The MLVA discriminated 19 distinct genotypes (GT), while with the cgMLST assay 79 sequence types (ST) could be determined with Simpson's diversity indices of 0.810 (MLVA) and 0.989 (cgMLST). The applied assays consistently identified the same main clusters among the diverse selection of isolates, thereby demonstrating their suitability for various genetic analyses and their ability to yield congruent results.


Assuntos
Mycoplasma iowae , Animais , Tipagem de Sequências Multilocus/métodos , Tipagem de Sequências Multilocus/veterinária , Genótipo , Técnicas de Genotipagem/veterinária , Sequências de Repetição em Tandem , Repetições Minissatélites/genética , Filogenia
15.
J Clin Microbiol ; 61(11): e0055823, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37815371

RESUMO

The recently observed increase in invasive Streptococcus pyogenes infections causes concern in Europe. However, conventional molecular typing methods lack discriminatory power to aid investigations of outbreaks caused by S. pyogenes. Therefore, there is an urgent need for high-resolution molecular typing methods to assess genetic relatedness between S. pyogenes isolates. In the current study, we aimed to develop a novel high-resolution core-genome multilocus sequence typing (cgMLST) scheme for S. pyogenes and compared its discriminatory power to conventional molecular typing methods. The cgMLST scheme was designed with the commercial Ridom SeqSphere+ software package. To define a cluster threshold, the scheme was evaluated using publicly available data from nine defined S. pyogenes outbreaks in the United Kingdom. The cgMLST scheme was then applied to 23 isolates from a suspected S. pyogenes outbreak and 117 S. pyogenes surveillance isolates both from the Netherlands. MLST and emm-typing results were used for comparison to cgMLST results. The allelic differences between isolates from defined outbreaks ranged between 6 and 31 for isolates with the same emm-type, resulting in a proposed cluster threshold of <5 allelic differences out of 1,095 target loci. Seven out of twenty-three (30%) isolates from the suspected outbreak had an allelic difference of <2, thereby identifying a potential cluster that could not be linked to other isolates. The proposed cgMLST scheme shows a higher discriminatory ability when compared to conventional typing methods. The rapid and simple analysis workflow allows for extended detection of clusters of potential outbreak isolates and surveillance and may facilitate the sharing of sequencing results between (inter)national laboratories.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Tipagem de Sequências Multilocus/métodos , Streptococcus pyogenes/genética , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/epidemiologia , Genoma Bacteriano/genética , Europa (Continente) , Surtos de Doenças
16.
Eur J Clin Microbiol Infect Dis ; 42(12): 1469-1476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870711

RESUMO

PURPOSE: Traditional epidemiological investigations of healthcare-associated Clostridioides difficile infection (HA-CDI) are often insufficient. This study aimed to evaluate a procedure that includes secondary isolation and genomic typing of single toxigenic colonies using core genome multilocus sequence typing (cgMLST) for the investigation of C. difficile transmission. METHODS: We analyzed retrospectively all toxigenic C. difficile-positive stool samples stored at the Lausanne University Hospital over 6 consecutive months. All isolates were initially typed and classified using a modified double-locus sequence typing (DLST) method. Genome comparison of isolates with the same DLST and clustering were subsequently performed using cgMLST. The electronic administrative records of patients with CDI were investigated for spatiotemporal epidemiological links supporting hospital transmission. A comparative descriptive analysis between genomic and epidemiological data was then performed. RESULTS: From January to June 2021, 86 C. difficile isolates were recovered from thawed samples of 71 patients. Thirteen different DLST types were shared by > 1 patient, and 13 were observed in single patients. A genomic cluster was defined as a set of isolates from different patients with ≤ 3 locus differences, determined by cgMLST. Seven genomic clusters were identified, among which plausible epidemiological links were identified in only 4/7 clusters. CONCLUSION: Among clusters determined by cgMLST analysis, roughly 40% included unexplained HA-CDI acquisitions, which may be explained by unidentified epidemiological links, asymptomatic colonization, and/or shared common community reservoirs. The use of DLST, followed by whole genome sequencing analysis, is a promising and cost-effective stepwise approach for the investigation of CDI transmission in the hospital setting.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Tipagem de Sequências Multilocus/métodos , Clostridioides difficile/genética , Clostridioides/genética , Estudos Retrospectivos , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Hospitais , Genoma Bacteriano
17.
BMC Microbiol ; 23(1): 318, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898766

RESUMO

PURPOSE: Carbapenem resistant Klebsiella pneumoniae is associated with nosocomial infections and can cause high mortality, which poses great threat to human health. This study was aimed at investigating the molecular epidemiology and antimicrobial resistance profiles of carbapenem resistant Klebsiella pneumoniae isolates and providing clues for management and control of carbapenem resistant Klebsiella pneumoniae infections. METHODS: A total of 2324 Klebsiella pneumoniae strains were isolated from the First Affiliated Hospital of Guangxi Medical University from June 2018 to October 2020, and 103 carbapenem resistant Klebsiella pneumoniae strains from inpatients were collected, and the specimens mainly came from the sputum, urine, secretions, and blood. The antimicrobial susceptibility tests were performed using the VITEK 2 Compact system or the Kirby-Bauer disk-diffusion method. The resistance genes were detected by polymerase chain reaction and sequencing. The homology analysis of carbapenem resistant Klebsiella pneumoniae strains was performed by multilocus sequence typing. RESULTS: Antimicrobial susceptibility results showed that the 103 carbapenem resistant Klebsiella pneumoniae strains were resistant to most common antibiotics. Resistance genes detection showed that the carbapenem resistant Klebsiella pneumoniae isolates mainly carried metallo-beta-lactamase, and the predominant gene was NDM-1. The homology analysis found that the major ST type were ST11, follow by ST15 and ST17. CONCLUSION: The carbapenem resistant Klebsiella pneumoniae isolates in our study shown resistance to most common antibiotics. Of the 103 carbapenem resistant Klebsiella pneumoniae strains, 91 strains (88.35%) carried carbapenemases genes, and NDM was the predominant carbapenemase gene detected. ST11 was the major ST typing of carbapenem resistant Klebsiella pneumoniae in our hospital. Our finding may play a role in control and management of the carbapenem resistant Klebsiella pneumoniae infections and guiding clinical antibiotic therapy. In addition, metallo-beta-lactamase should be served as a key target to be monitored in carbapenem resistant Klebsiella pneumoniae infection.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Klebsiella pneumoniae , Centros de Atenção Terciária , Infecções por Klebsiella/epidemiologia , Testes de Sensibilidade Microbiana , China/epidemiologia , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , Tipagem de Sequências Multilocus/métodos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética
18.
Invest Ophthalmol Vis Sci ; 64(13): 33, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37862027

RESUMO

Purpose: Staphylococcus epidermidis, a commensal, has emerged as an important opportunistic pathogen, particularly methicillin-resistant S. epidermidis (MRSE). The mechanism behind this transformation remains unclear. This study aimed to investigate the molecular and phenotypic characteristics of MRSE isolated from healthy conjunctiva and ocular infections. Methods: We collected MRSE isolates from two groups: healthy conjunctiva from patients undergoing cataract surgeries and ocular infections at our hospital. Genotypic analysis included pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec), and biofilm-related genes (icaA, aap, and bhp). Additionally, phenotypic data on biofilm production and antibiotic susceptibility were recorded. Results: A total of 86 isolates, including 42 from healthy conjunctiva and 44 from ocular infections, were analyzed. MLST identified 21 sequence types (STs), with ST59 being the most frequent (n = 33, 39.5%), followed by ST130 (n = 10, 11.6%), ST57 (n = 6, 7.0%), and ST2 (n = 6, 7.0%). All isolates were categorized in 23 PFGE types, and SCCmec IV was the most prevalent SCCmec type (n = 52, 60.5%). The two sources of isolates exhibited overlapping molecular types and phenotypic traits, although the ocular infection isolates exhibited significantly higher multidrug resistance compared to healthy conjunctiva isolates (P = 0.032). When contrasting ST59 with non-ST59, ST59 displayed a significantly higher presence of aap (100%) and bhp (69.7%) while lacking icaA (0%). ST59 also showed lower susceptibility to fluoroquinolones compared to non-ST59 (42.4%-54.5% vs. 75.5%-83.0%; P < 0.01). Conclusions: MRSE isolates from healthy conjunctiva and ocular infections demonstrated a degree of resemblance. Specific strains, notably ST59, exhibited distinctive characterizations.


Assuntos
Infecções Oculares , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Resistência a Meticilina/genética , Staphylococcus epidermidis/genética , Tipagem de Sequências Multilocus/métodos , Taiwan , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
19.
J Hosp Infect ; 142: 18-25, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802237

RESUMO

BACKGROUND: The global spread of Klebsiella pneumoniae ST15, causing multi-continental outbreaks, contributes to the movement of resistance genes between clones increasing the antimicrobial resistance crisis. The genomic traits providing it with the ability to outcompete other bacteria and cause epidemics remain unclear. AIM: To identify the specific genomic traits of K. pneumoniae ST15 to develop a diagnostic test. METHODS: An outbreak caused by K. pneumoniae occurred in Hospital A Coruña, Spain. Antimicrobial susceptibility analysis and molecular typing (PGFE and MLST) were performed. One isolate of each sequence type was selected for whole-genome sequencing analysis. Comparative analysis of genomes was performed using RAST. BLASTn was used to evaluate the presence of the fhaC and kpiD genes. Two hundred and ninety-four K. pneumoniae from a Spanish nationwide collection were analysed by PCR. FINDINGS: Genotyping showed that 87.5% of the isolates tested belonged to a clone with a unique PFGE pattern which corresponded to ST15. Comparative genomic analysis of the different STs enabled us to determine the specific genomic traits of K. pneumoniae ST15. Two adherence-related systems (Kpi and KpFhaB/FhaC) were specific markers of this clone. Multiplex-PCR analysis with kpiD and fhaC oligonucleotides revealed that K. pneumoniae ST15 is specifically detected with a sensitivity of 100% and a specificity of 97.76%. The PCR results showed 100% concordance with the MLST and whole-genome sequencing data. CONCLUSION: K. pneumoniae ST15 possesses specific genomic traits that could favour its dissemination. They could be used as targets to detect K. pneumoniae ST15 with high sensitivity and specificity.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus/métodos , beta-Lactamases/genética , Klebsiella pneumoniae , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Reação em Cadeia da Polimerase Multiplex , Células Clonais , Testes de Sensibilidade Microbiana
20.
Mol Phylogenet Evol ; 188: 107903, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574177

RESUMO

Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.


Assuntos
Antibacterianos , Fatores de Virulência , Animais , Bovinos , Fatores de Virulência/genética , Tipagem de Sequências Multilocus/métodos , Filogenia , Farmacorresistência Bacteriana/genética , Yersinia/genética , Variação Genética , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...